skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akram, Faiza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Real-time data stream processing at the edge is crucial for time-sensitive tasks within large-scale IoT systems. Task scheduling plays a key role in managing the Quality of Service (QoS), necessitating a prioritization system to distinguish between high and low-priority tasks, thus ensuring efficient data processing on edge nodes. Existing scheduling algorithms rigidly prioritize tasks deemed as high-priority, often at the expense of fairness and overall system efficiency. In this paper, we propose a Priority-aware Fair Task Scheduling (FTS-Hybrid) algorithm that addresses these challenges by managing priority based task execution in a controlled manner. Our task scheduling algorithm streamlines resource utilization and enhances system responsiveness, contributing to low latency and high throughput, outperforming competing techniques including First-Come-FirstServe (FCFS), Round Robin (RR), and Priority Scheduling (PS). We implemented FTS-Hybrid on Apache Storm and evaluated its performance using an open-source real-time IoT benchmark (RIoTBench). Experimental results show that the FTS-Hybrid algorithm reduces task execution latency by 24%, 31%, and 26% compared with FCFS, RR, and PS, respectively, by strategically mitigating queuing delays under dynamic workload conditions. 
    more » « less